如何学习大数据?

| 2022-09-22 admin

在美国,大数据工程师平均年薪达17.5万美元,在中国顶尖的互联网公司里,大数据工程师的薪酬比同级别的其他职位高出30%以上。DT时代来得太突然了,国内发展势头很猛,而大数据相关的人才却非常地有限,在未来若干年内都会是供不应求的状况,因此程序员们,你们的春天到了!

成为数据分析师有哪些要求?

1. 理论知识要宽泛,涉及数学、市场和技术。要求及对数据敏感,包括统计知识、市场研究、模型原理等。

2. 常规分析工具的使用,包括数据库、数据挖掘、统计分析工具,常用办公软件(Excel、PPT、思维导图)等等。

3. 有一定的业务理解能力,能理解业务背后的商业逻辑。因为只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。

4. 数据报告和数据可视化的能力。数据分析得再好,如果不能以漂亮的方式“表达”,成效也会大打折扣。

现在大多工作都需要你拥有逻辑分析能力,尤其是对数据的分析理解。在数据化运营理念深入的今天,BAT这样的大型互联网公司强调全员参与数据化运营,把数据分析当作一种能力在培训,也必定是未来趋势。

数据分析师所需具备的能力和知识(从数据分析的4个步骤来理解)

数据分析的四个步骤:数据获取、数据处理、数据分析、数据呈现。

1. 数据获取

数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。

推荐书籍:《金字塔原理》、麦肯锡三部曲:麦肯锡意识、工具、方法;

推荐工具:思维导图工具(Xmind百度脑图等);

2. 数据处理

数据的处理需要掌握有效率的工具:

Excel及高端技能:日常工作通用,容易掌握,处理10万级别的数据很轻松。学习高端Excel需要哪些技能?学习excel是个循序渐进的过程

基础:简单的表格数据处理、打印、查询、筛选、排序

函数和公式:常用函数、高级数据计算、数组公式、多维引用、function

可视化图表:图形图示展示、高级图表、图表插件

数据透视表、VBA程序开发

按照我习惯的方法,先过一遍基础,知道什么是什么,然后找几个case练习。多逛逛excelhome论坛,平常多思考如何用excel来解决问题,善用插件,还有记得保存。

帆软FineReport:专业的报表工具,日常做报表设计一个模板可通用,只要会写SQL就可上手。相比excel做报表,开发的技术要求较少,能很快地开发常规报表、动态报表,并可以放在移动端和大屏查看。

BAT大数据分析师:如何规划大数据学习之路?_大数据

BAT大数据分析师:如何规划大数据学习之路?_大数据_02

Oracle和SQL sever:企业最常用的千万级别的数据库,熟练掌握SQL语言。

保持不断的技术学习,比如学习新流行的hadoop之类的分布式数据库来提升个人能力,对求职有帮助。

3. 分析数据

分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。

因此,熟练掌握一些统计分析工具不可免:

SPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。

SAS:经典挖掘软件,需要编程。

R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。

4. 数据呈现

Tableau:可视化工具的鼻祖,对于处理好的数据可作自由的可视化分析,图表效果惊人,大数据BI工具FineBI:类同Tableau,可在前端做任意维度分析;数据可在前端继续处理(计算、筛选过滤等),可对接hadoop之类的大数据平台,数据处理性能较好。

BAT大数据分析师:如何规划大数据学习之路?_大数据_03

 

很多数据分析工具已经涵盖了数据可视化部分,只需要把数据结果进行有效的呈现和演讲汇报,可用wordPPTH5等方式展现。

总结:大数据分析的工作是由大数据工程师设计的系统提供的大量数据。大数据分析包括趋势、模式分析和不同分类和预测系统的开发。因此,简而言之,大数据分析是对数据的高级计算。大型数据工程是系统设计、部署和计算平台的顶层结构。

学习信息分布

你的领域是什么,它的方向是什么?现在我们已经了解了我们可以从行业中选择的职业类型,让我们来决定哪一个区域适合你。这样,我们就可以确定你在这个行业中的位置。一般来说,你的教育背景和工作经验可以分为:基于我们的教育背景(包括利息,但不一定是你的大学教育相关)在计算机科学、数学、行业经验,新的数据,计算机科学家和工程师(数据域相关工作)因此,根据上述分类。